

The Health Impacts of Unconventional Oil and Gas Development (Fracking) on Neonatal Outcomes for Mothers and Infants

Dr. Margaret McGregor, MD, MHSc Clinical Associate Professor Department of Family Practice Univeristy of British Columbia

Élyse Caron-Beaudoin, PhD, MSc Assistant Professor, Environmental Health Department of Health and Society University of Toronto Scarborough

UNCONVENTIONAL OIL AND GAS (UOG)

- Pad preparation phase: site preparation activities involving surveys, permit approvals, land or surface access and removal of vegetation
- **Drilling phase:** wells are drilled vertically and then horizontally deep down in the rock formation. Holes are punctured in the horizontal section of the casing
- Hydraulic fracturing/stimulation phase: injecting large volumes of fluid (water, sand, chemicals) in rock formation to create fractures, freeing the trapped natural gas
- **Production phase:** natural gas flow free from the shale layers. It is transferred to storage tanks and delivered by pipelines

OIL AND GAS IN BRITISH COLUMBIA

In British Columbia (BC)

Montney Formation \approx 67% of the province's production

Potential contamination by:

Volatile organic compounds (VOCs)

References

Crowe et al. 2016; Gilman et al. 2013; Macey et al. 2014; Vengosh et al. 2014

Trace and radioactive elements naturally occuring in the rock formation

References

Lester et al. 2015; Pichtel 2016, Wisen et al. 2019a,b

Toxicological data on chemicals in hydraulic fracturing fluids

Chemicals with toxicological data

Data from Elliott et al. 2016

EXPERIVA Exposures in the Peace River Valley

Gestational exposure to chemicals related to oil and gas and their potential mechanisms of toxicity in Northeast British Columbia

Recruitment

- From May to August 2019
- 3 medical clinics, 1 midwifery clinic
- Treaty 8 Tribal Association, West Moberly and Saulteau First Nations
- Recruited 85 participants
- 90% of pregnant individuals that were met participated

METHODS: OIL & GAS ACTIVITY METRICS

- Wells in pad preparation
- Wells in drilling
- Wells in hydraulic fracturing
- Wells in production

Conventional wells

• IDW method: based on the density and proximity of oil & gas wells to residences or postal codes

$IDWx = \sum_{i=1}^{n} * (1/d^{2}i)$

X = radius (buffer distance) i = given well inside the radius di = distance between a given well and the residence n= total number of wells inside the radius

RESULTS: CHARACTERISTICS OF THE PARTICIPANTS

RESULTS: DENSITY/PROXIMITY OF WELLS

RESULTS: INDOOR AIR VOCs

11

association not significant 🔶 significant positive association

Coreen Daley, MEnvSc PhD candidate

RESULTS: URINARY TRACE ELEMENTS

Trace elements	EXPERIVA study			CHMS 2nd cycle (women 20–39 years old)		NHANES 9th cycle (women 6–79 years old)	
	Detection frequency (% of all samples)	Median	95th percentile	Median	95th percentile	Median	95th percentile
Aluminum	98	6.82	23.04	NA	NA	NA	NA
Arsenic	100	5.24	41.02	6.60	76.00	5.94	48.20
Barium	98	2.87	13.59	NA	NA	1.39	5.25
Cadmium	98	0.12	0.32	0.34	0.85	0.19	0.92
Chromium	99	0.24	0.76	NA	NA	NA	NA
Cobalt	100	0.88	3.16	0.27	0.89	0.53	1.70
Copper	100	9.17	23.23	9.60	17.00	NA	NA
Gallium	97	0.17	0.63	NA	NA	NA	NA
Iron	100	6.26	19.50	NA	NA	NA	NA
Lead	94	0.20	0.78	0.38	1.10	0.32	1.22
Lithium	100	28.15	94.28	NA	NA	NA	NA
Manganese	70	0.16	0.73	<0.20	0.61	< 0.13	0.64
Nickel	100	1.41	3.77	1.20	3.90	NA	NA
Selenium	100	56.26	121.53	46.00	88.00	NA	NA
Strontium	100	194.88	463.34	NA	NA	109.00	291.00
Thallium	99	0.20	0.41	0.21	0.57	0.19	0.46
Vanadium	96	0.19	0.53	<0.10	<0.10	NA	NA
Zinc	100	215.67	593.79	250.00	540.00	NA	NA

RESULTS: OXIDATIVE STRESS AND ANTIOXIDANT URINARY BIOMARKERS

Exposure Metrics	SOD	GST	CAT	aMT6s	MDA	8-OHdG
All – ID^2W no buffer	-0.134	-0.004	0.144	-0.128	0.092	-0.237*
All - ID^2W 10 km	-0.150	-0.020	0.172	-0.142	0.093	-0.236*
All - $ID^2W5 km$	-0.153	-0.023	0.182 [†]	-0.144	0.089	-0.242*
All - Density 10 km	-0.118	0.038	-0.032	-0.049	0.080	-0.103
All - Density 5 km	-0.148	-0.007	0.071	-0.119	0.068	- 0.226 [†]
UOG - ID ² W no buffer	-0.228*	-0.017	0.115	-0.146	0.030	-0.281*
UOG - ID ² W 10 km	-0.224*	-0.028	0.142	-0.163	0.038	-0.290*
UOG - ID ² W 5 km	-0.218*	-0.031	0.152	- 0.173 ⁺	0.043	-0.299*
UOG - Density 10 km	- 0.196 ⁺	0.034	-0.052	0.006	0.003	-0.075
UOG - Density 5 km	-0.184	-0.013	0.063	-0.099	0.019	- 0.205 [†]

Matthew Day, MEnvSc PhD candidate

RESULTS: ENDOCRINE DISRUPTION BY TRACE ELEMENTS

Mixture of the 5 elements increased testosterone secretion at the mid-range concentrations

3β-HSD expression level

Testosterone secretion

Ghida Balbaaki, MSc PhD candidate

Mix1: Mixture of the 5 trace elements (aluminum, manganese, barium, cobalt & strontium) at the lowest concentration of each (5 ug/l for Mn, Sr, Al, Ba and 0.05 ug/l for Co)) Mix2: Mixture of the 5 trace elements at the mid-range concentration of each (50 ug/l for Mn, Sr, Al, Ba and 0.5 ug/l for Co))

EPIDEMIOLOGICAL STUDIES

Proximity and density of oil and gas wells and birth/maternal outcomes in Northeastern British Columbia

To evaluate associations between maternal residential proximity to oil and gas wells and birth outcomes using birth records from the Fort St John hospital between January 1 2007 to December 31 2016

RESULTS: BIRTHWEIGHT

Adjusted beta coefficients for the association of well density/proximity metrics and **birthweight**

Adjusted for parity, infant's sex assigned at birth, mother's age and smoking

Full-term singleton birth in the Fort St John hospital, BC, Canada, from January 1 2007 to December 31 2016 (n=5018) * p-value < 0.05

Adjusted odds ratio for the association of well density/proximity metrics and maternal depression, anxiety and substance use

Adjusted for maternal age at delivery, parity, and smoking Full-term singleton birth in the Fort St John hospital, BC, Canada, from January 1 2007 to December 31 2016 (n=5018) * p-value < 0.05

- Epidemiological and toxicological literature suggests risk for poorer birth and maternal outcomes.
- Important lack of data on exposure assessment and mechanisms of toxicity
- Evidence of higher exposure levels to VOC and trace elements in the EXPERIVA study participants compared to the general Canadian population
 - Preliminary evidence that density and proximity of oil and gas wells contribute to the residential levels of VOC
- Density and proximity of oil and gas wells was associated with altered antioxidant urinary markers
- Mixtures of trace elements at concentrations similar to EXPERIVA induce endocrine disruption in lab-based models

NEXT STEPS

ONGOING EPIDEMIOLOGICAL STUDIES

- To evaluate associations between maternal residential proximity to <u>phase-specific</u> oil and gas activity and:
 - Preterm birth and birthweight
 - Apgar scores
 - Congenital disorders

Coreen Daley, MEnvSc PhD candidate

Jannie Leung, MSc PhD candidate

$SSHRC \equiv CRSH$

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Fonds de recherche Santé Québec 🏼 🔹

- West Moberly First Nation
- Saulteau First Nation
- Treaty 8 Tribal Association
- Marc-André Verner, UdeM
- Élyse Caron-Beaudoin, UTSC
- Maryse Bouchard, UdeM
- Michèle Bouchard, UdeM
- Sammi Haddad, UdeM
- Katherine L. Frohlich, UdeM
- Marianne Hatzopoulou, UofT
- Heather MacLean, UofT
- Amira Aker, Boston U
- Margaret McGregor, UBC

- Tim Takaro, SFU
- Laura Minet, Uvictoria
- Mary Kang, McGill
- Lisa Ronald, C2E2
- Ulrike Meyer, UBC
- Ray Copes, UofT
- Kyle Powys Whyte, University of Michigan
- Kristina Whitworth, Baylor College of Medicine
- Jonathan Chevrier, McGill
- Cathy Vaillancourt, INRS
- Géraldine Delbès, INRS
- Romain Chesnaux, UQAC

- Miranda Doris, UofT
- Jad Zalzal, UofT
- Jannie Leung, UTSC
- Coreen Daley, UTSC
- Matthew Day, UTSC
- Yifan Wu, UTSC
- Ghida Balbaaki, INRS
- Sonje Juul, UCalgary

THANK YOU! MERCI!

FROM BENCH TO COMMUNITIES LAB ÉLYSE CARON-BEAUDOIN

elysecaronbeaudoin.com

≥ elyse.caronbeaudoin@utoronto.ca